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ABSTRACT

This paper discusses the detailed design of an XML
databinding framework for aircraft engine simulation.
The framework provides an object interface to access
and use engine data, while at the same time preserving
the meaning of the original data. The Language
independent representation of engine component data
enables users to move around XML data using HTTP
through disparate networks. The application of this
framework is demonstrated via a web-based turbofan
propulsion system simulation using the World Wide
Web (WWW). A Java Servlet based web component
architecture is used for rendering XML engine data into
HTML format and dealing with input events from the
user, which allows users to interact with simulation data
from a web browser. The simulation data can also be
saved to a local disk for archiving or to restart the
simulation at a later time.

INTRODUCTION

Computer programs capable of simulating the
operation of aircraft engines are useful tools that can
help reduce the time, cost and risk of product design
and development and facilitate learning about the
complex interactions between jet engine components.
However, the strongly-coupled nature of the
components’ flow physics and the large number of
operating and design parameters needed for simulation
of the aircraft engine system present a challenge to
developers who aim at designing an easy-to-use and
effective engine simulation program for users. Most of
the aircraft engine simulation software currently
available have limitations primarily in the presentation
of the simulation input and output data, due to the use
of text-based interfaces, and the lack of data validation
methods. As a result, engine simulation results could be
overwhelming and difficult to interpret without a
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significant effort. Moreover, traditional simulation data
are, in general, stored in proprietary data formats and
constrained by hardware and operating svstem platform
differences. Thus, developers are hindered in their
efforts to synthesize simulation data in their design
uniess a clearly defined and interoperable data interface
exists. The bottlenecks caused by data handling,
heterogeneous computing environments and
geographically separated design teams. continue to
restrict the use of these tools [1].

Web-based simulation, due to its accessibility,
convenience and emphasis on  collaborative
composition of simulation models. distributed

heterogeneous execution, and dvnamic multimedia
documentation, has the potential to funcamentally alter
the practice of simulation [2]. Presently. the majority of
work in web-based simulation has centered on re-
tmplementation of existing distributed 2nd standalone
simulation logics within Java Applets 3.4]. Applets are
quite popular because they are supported by common
browsers and are safe to execute on cilent computers.
However. with the whole simulation ccdz righthy-bound
to an Applet, it may take a long time for the rich engine
simulation code to load within a cliert’s browser. In
addition, it is often not efficient to execute complicated
simulation logic at the client side. where a high
performance computer is generallv not available.
Applets’ security model, arguably one of its strengths,
also creates obstacles for post-processing of simulation
data beyond what applets provide since it inhibits
creation of data files on the host machine.

This paper describes a web-based aircraft engine
simulation system, called X-Jgrs, through dynamic
XML databinding framework which permits data
communication with ease. XML [3]. due to its
structured, platform and language independent, highly
extensible and web-enabled nature. has rapidly become
an emerging standard to represent data between diverse
applications. XML can represent both structured and
unstructured data, along with its rich descriptive
delimiters. By using XML to represent engine data in
high performance propulsion system simulation, it is
possible to faithfully model the structural elements of a
chosen component in an interoperable fashion that is
natural in their simulation context. Since HTTP (Hyper
Text Transfer Protocol) already supports transmission
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of plain text, XML data can be moved around readily
using the HTTP through firewalls and disparate
networks. Engine databinding through XML also
provides simulation designers with a higher and more
user-friendly API to work with underlying engine
components repository and thus enables the
components to communicate with each other effectively.

ENGINE MODELS

This section provides an overview of engine analysis
model that is used in our web-based simulation. Also
presented is the designed engine data object model that
will be used in engine databinding framework.

Analysis Model

The mathematical model used to describe the
operation of the gas turbine system in the current work
is pattermed after that presented in [6]. Here, the gas
turbine system is decomposed into its individual basic
components: inlet, compressor, combustor, turbine,
nozzle, bleed duct connecting duct, and connecting
shaft. Intercomponent mixing volumes are used to
connect two successive components as well as define
temperature and pressure at component boundaries.
Operation of each of the components is described by
the equations of aero-thermodynamics which are space-
averaged to provide a lumped parameter model for each
component. For dynamic (transient) gas turbine
operation, the model includes the unsteady equations
for fluild momentum in connecting ducts, inertia in
rotating shafts, and mass and energy storage in
intercomponent mixing volumes. A  complete
description of the model can be found in [7].

Data Object Model

Based on the above engine analysis model, an
“Engine Data Object” (EDO) model was designed to
precisely define the intellectual content of engine
component data, including a complete definition of
engine data entities, attributes, relationships, and
specification of local and global constraints on these
entities.

In order to effectively represent simulation data
using XML, the engine system, shown in Figure 1(a),
was first decomposed into individual basic components
in a strict hierarchical manner in accordance with the
XML topology. A set of data structures is then built in
parallel with each engine component. An overall layout
of a simplified data model is summarized in Figure 1(b).
Each node in the model shown here is represented as an
engine data object. The figure also indicates (informally)
what data, if any, are encapsulated within each node
object. For example, the Nozzle data object shown in
Figure 1(c) gives information about a particular
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converging-diverging or converging-only nozzle in an
engine simulation. The user-defined parameters of a
nozzle include a set of nozzle design point data and
nozzle initial operating data, such as mass tlow rate,
throat area, exit area, gross thrust. etc. Consequently,
these data are designed as subchildren data objects in
Nozzle. In addition, the nozzle throat and exit areas may
be adjusted during the transient by a user-defined
schedule; ThroatdAreaTransientControllers and
ExitdAreaTransientControllers are designed for this
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Figure 1 (a) decomposition of engine component; (b)
hierarchical engine data object model; (c) subchildren

objects inside nozzle data object
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purpose. NozzleSolution object is used to store the
solution datasets after a simulation, which itself
contains other children data objects that are not shown
here. An optional Descriptor object can aiso be
included to describe nozzle operating status.

ENGINE DATABINDING FRAMEWORK

Based on our data object model design. an Engine
Data Binding (EDB) Framework has been implemented
in Java to facilitate binding an engine data object into a
data entity in XML-based engine data file. The
framework makes it easy to convert between the engine
data stored in XML file and their object representations,
and facilitates the applications to access, modify and
store any engine component data object. Figure 2 gives
a schematic representation of all components in engine
databinding framework. Engine databinding framework
can also be run as a standalone application [8].

Engine Schema

Engine schema establishes a bridge between XML-
based engine data and its data object model. It
associates each piece of the information defined in the
data object model to a precise location in the XML
structure. A set of engine schemas have been designed
using XML Schema language [9] that specifies how the
constituents of the engine data objects are mapped to an
underlying XML-based engine data structure. The rules
in the data model will guarantee that the schema
description of engine data is syntactically correct and
also follows the grammar defined within it.

Figure 3 shows a sample schema representation for
the Voz-/e and one of its children, TransientController,
which is used to supply transient control parameters for
throat and exit areas. Based on the Nozzle data model

shown in Figure 1(c), the “Nozzle” schema defines all
the data elements that are contained in a single nozzle
data object. These elements are constrained by their
corresponding complexTypes and simpleTypes and
encapsulated in the Nozz/e object. For example,
NozzleDesignPointData defines all its permitted data
variables, such as MassFlowRate, ThroatArea etc, and
their corresponding data types, which are built-in
double type. Also note that in the above Nozzle schema
only NozzleDesignPointData element is explicitly
defined, the rest of its element definitions use the “ref”
attribute to tell the data parser in the engine simulation
that the definition for these elements are defined in
other schema files with the same target namespace (i.e,
the default “engine” namespace in Fig.3) as nozzle.
These ‘ref’ed schema will be automatically included by
schema parser during the run time. This kind of flexible
design will guarantee that all the basic schema types
can be reused. Moreover, it will allow for modular
development and easy modification of engine schema
as engine data object model evolves in the future.

Schema Compiler

The engine schema compiler is designed to map an
instance of an engine schema into the appropriate
engine data object model. It auromatically translates an
engine-specific schema into a set of derived engine data
object models (set of classes and types which represent
the data) with appropriate access and mutation (i.e., get
and set) methods that can be used to affect the
underlying engine data files. Figure 4 shows an
example of how a generated class should correspond to
the nozzle schema defined in the previous section. With
the “Nozzle” schema defined, attributes are “compiled”
into simple Java types. usually primitives; element
(along with its type information which specifies the
content model) becomes engine data class, with

Simulation

Engine Data
Objects

Figure 2. Engine databinding framework
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<x~ verson="t 7>
<xsd:schema targeiNamespace="
xmins. xsa="http:/fwww w3.0rg, 223 . XMLScnema”
xmins="http://mems1.n.uiolecs =2..engine’ eiementForrDefauit="qualifieg” version="* 0"
<xsd:include schematocaucr="TransientControlier xsd"/>
<xsd:inctude schematocaucn="Descriptor.xsd"/>

~emsl v Ltoieco eduengine’

<l-- ComplexType Nozzie * 5 Jesigned to constraint Nozzie >
<xsd:complexType name="Nozzle_t">
<xsd:sequence>
<xsd:element name="Descriptor” type="Descriptor_t" minOccurs="0"/>
<xsd:element name="NozzleDesignPointData">
<xsd:complexT ,pe>
<xsd:attroute name="MassFlowRate" type="xsd:double"/>
<xsd:attmcute name="ThroatArea" type="xsd:double" >
<xsd:attncute name="ExitArea" type="xsd:double"/>
<xsd:attntute name="DragCoefficient” type="xsd:double"/>

<xsd:attrsute name="VelocityCoefficient” type="xsd:double"/>

<xsd:attncute name="Gross Thrust” type="xsd:double™">
</xsd:complexT ype>
</xsd:element>
<l-- NozzleinitialCce-aungData element is similarily gesigned
and ommittes ~=-e for simplicity-->
<xsd:element name= ThroatAreaTransCntl"
type="TransientCnti_t"/>
<xsd:element name="ExitAreaTransCntl"
type="TransientCnti_t"/>
<!—All NozzieSc:.m 3nData elements and ommitted for simplicity-->
</xsd:sequence>
<xsd:attribute name="Name" type="xsd:string" use="required"/>
<{xsd:complexType>
</xsd:schema>

<?xml version="1.0"?>
<xsd:schema xmins xsd="http:. ‘www.w3.0rg/2001/XMLSchema”
elementFormDefauit="guaiified" version="1.0">

<!-- TransientController 2z mpiexType -->
<xsd:compiexType name="TransientCnti_t">
<xsd:sequence>
<xsd:elemert ~ame="TimeArray" type="doubleDatalist"/>
<xsd:elemert ~ame="ValueArray" type="doubleDatalist"">
</xsd:sequence>
<xsd:attribute name="name" type="xsd:string" use="optional"/>
</xsd:complexType>

<xsd:simpieType name="ZoubleDatalist">
<xsd:list itemType="xsd:double"/>
</xsd:simpleType>
</xsd:schema>

/I~ alt the Java mport statements here

public class Nozzie implements java.io.Senalizable ¢
private String _name;
private Descriotor descriptor;
private DesignPointData _nozzleDesignPointCaa;
private IntCceratingData _nozzlelnitOperatingCata;
private ThreatAreaTransCntl _throatAreaTransCol;
prvate ExitAreaTransCntl _exitAreaTransCntl;
private NozzeSolutionData _nozzieSolutionData;

pubiic Nozz'ef} {
super();

}
public String getName() {
return this._name;

public void seiName(String name) {
this._name = name;

}
public ExitAreaTransCntl getExitAreaTransCntl(} {
return this._exitAreaTransCntf;

public void setExitAreaTransCnt{ExitAreaTransCntl exitAreaTransCatl) {
this._exitAreaTransCntl = exitAreaTransCntl;

}
/1~ the same with all other types and are omitted here

public bociean validate()
throws SngineValidationException  {
ry {
*/alidator validator = new Validator{};
salidator validate(this); }
caich (EngineValidationException vex) {
return faise;

return irue,

public voic —arshal(java.io. Writer out)
throws MarshalException, EngineValidationException {
Marshaiier.marshal(this, out);

public static Nozzle unmarshal(java.io.Reader reader)
throws MarshalException, EngineValidationException {
return (Nozzie)Unmarshalier.unmarshai(Nozz:e.class, reader);
)

}

Figure 3. Engine schema representation of Nozzle and

TransientControl data object model

Figure 4. Nozzle data class generated by schema

compiler process

generated data types and properties encapsulated in it.
The generated class provides pairs of accessor (ger) and
mutator (set) methods for all the properties defined in
engine schema, which closely follows the JavaBean
Design Pattern [10].

In addition, the engine schema compiler can
generate the data -validation’ class code so as to
enforce the constraints expressed in the schema. The
code generated by the valid schema translation will
check that incoming engine data files are ‘legal’ with
respect to the constraints defined in schema, thereby
ensuring that only valid XML-based engine data files
are produced by the marshalling process.

The generated Java classes also include a set of
marshal, and unmarshal methods that can be used t
“translate” engine application data from/to engine data

4

objects automatically. These are achieved through an
underlying Marshalling Framework design.

Marshalling Framework

The marshalling framework supports the
transportation (unmarshal) of XML-based engine data
into “graphs” of interrelated instances of objects that
are generated by engine schema complier and, in
addition, converting (marshal) such graphs back into
engine data stored in XML documents. The marshal
method works by taking a desired Writer object as
argument and then returning an XML element
representation of that object. If the object contains
references to other engine data objects, then recursion
can be used, using the same method. The same applies
to unmarshaling process where a general Reader is
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used. When the engine data are correctly unmarshaled,
¢ach element node in the XML file becomes an instance
of the data class that was generated by engine schema
compiler, i.e. engine data object. Then, the engine
simulation components can use the corresponding
methods, along with a set of mutator and accesor
methods, to work with the engine data in the underlying
data file. The end result is engine data binding.

SIMULATION ARCHITECTURE

X-Jgts i1s a web-based, interactive, graphical,
numerical gas turbine simulator which can be used for
the quick, efficient construction and analysis of
arbitrary gas turbine systems. It also provides a
systematic, meaningful data presentation and secured
data operation scheme with the support of a built-in
data binding framework. Figure 5 illustrates the overall
simulation architecture described in this paper, as well
as its major components and the interactions between
web client and simulation server,

Web Client

In X-Jgts system, the client user interface is
delivered through a web browser. The web browser is a
universal user interface that is responsible for
presenting engine simulation data, issuing requests to
the simulation web server. and handling any results
generated at the request of the user. X-Jgis uses both
dynamically generated HTML and Swing-based Java
Applet to properly present user-friendly data; in
particular, HTML is used to display simulation results,

while Swing-based Applet is used for graphic data
display. The platform-independent nature of HTML and
Java Applet enables the engine simulation to be widely
conducted from heterogeneous, networked computers.

As a general rule for web-based simulation,
application logic should not be implemented on the
browser. Complex simulation logics that are tightly
built into Applets are normally inefficient to execute
due to the fact that client side users generally lack
powerful computing resource. In addition, it may take
quite a long time for a client’s browser to load.
Therefore, the browser, HTML, and Swing Applets
designed in X-Jgts are used strictly for delivering the
user interface and view into the engine simulation. The
user requests are made either from the front-end Applet
or HTML code to perform designate tasks remotely in
the simulation web server.

Simulation Server

Engine simulation server is a dynamic extension of
a Web server and the heart of any web interactions. It
uses HTTP as protocol for communication and consists
of static resources, such as the front end simulation
Applet, as well as dynamic web pages (HTML) that are
generated by different engine web components hosted
in the server. The web server listens for incoming
requests and then services the requests as they come in.
Once the server receives a simulation request, it then
springs into action. Depending on the type of request,
the web server might look for a web page, or execute a
web component on the server. Either way, it will return
some kind of results to the web client.

In X-Jgts, engine web components are sets of

HApp Server eI
Engine D = ¥
Databinding — K %
Engine | Result o)  XSLT == K
Simulation Data Processor B v
Computing |36ty o &
set T § 5 %
¢
EDO Cont. B
gB ~ Data §8 " Conf. Data |g%
A % WA
DB (Download,, > @
Data . 1
Blslplag, Request ;}
Download Handler I3
Servlets Dispatcher %

Figure S. Web-based simulation architecture in X-Jgts
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simulation task-related Servlets [11] or JavaSever Pages
[12]. ServlevJSP provides a platform-independent
means of extending a web server's capabilities. When a
user issues a request for a specific Servlet, the server
will simply use a separate thread and then process the
individual request. This has a positive impact on
pertformance.

Engine web components are running in the Tomecat
[13] Web container to dynamically process various
simulation requests and construct responses. The web
container provides services such as request dispatching,
security, concurrency, and life-cycle management.
Based on different task-related services, engine web
components may invoke other web resources directly
through embedded URLs that point to other web
components while it is executing, or indirectly by
forwarding a request to another resource using
ReguestDispatcher. There are four main services
currently available in the engine simulation server.

Simulation Web Component

Engine simulation service is a core web component
that provides a transient, space-averaged, aero- and
thermo-dynamic gas turbine analysis for a web client
based on the engine analysis model. Besides that, the
simulation web component includes the built-in engine
databinding support and an underlying XML-based
engine database repository to store simulation data
(Figure S5). During the engine simulation, the
verification logics that are automarically generated by
engine schema compiler can be applied inside the
simulation so that the users’ inputs and simulation
outputs could be checked. Engine components can also
conveniently manipulate the engine data with a set of
accessor and mutator methods devised from
databinding framework. When a simulation completes,
engine components can readily marshal sets of engine
object data into the underlying data repository for
storage and unmarshal them back to engine data objects
later when data manipulation is necessary. This feature
gives a very useful and natural way for the storage of
any engine data object and provides the engine
simulation with unambiguous. meaningful and
interpretable representation of engine data sets. The
engine simulation service can also generate simulation
graphs and transcript data dynamically and send them
to the front-end Applet for display.

File Download Web Component

X-Jgts allows users to save their simulation results
to the local file system so that users can redisplay their
simulation result or restart simulation at a later time.
This is achieved internally by the file-download service.
Due to security reasons. current web browsers prohibit
the front-end simulation Applet from directly writing
data files on the host that is executing it. Nevertheless,

6

Applets can usually make network connections to the
host they came from. In X-Jors. whenever a user wants
to download a complete simulation result or engine
configuration file, the front-end Applet will make a
request to file-download service resided on the
simulation web server, locatwe the corresponding case
file from database repository and then generate a
download response to the user. By setting the HITP
Content-Dispositicn response  header  as
attachment, Web browser at client side will pop up a
"save as" box to let user save simulation result.

File Upload Web Component

At times users have a requirement to upload a file
from their local file system to the web server for display
of engine simulation result in a more meaningful
way. X-Jgts web components include a Servlet that can
receive a file upload using its input stream. When a file
is sent via a browser, it is embedded in a single POST
request with multipart/form-data [14] encoding type.
The file upload Servlet will take in the part of this
multipart data stream, reassembled and encoded on the
server, and then dispatch the processing results to
display service, where dynamically generated engine
data file in HTML format are sent to client’s browser
for display.

Display Web Component

Since engine data are storad in XML file format, it is
easier to apply certain transformation logic such that
simulation results can be displayed in a more friendly
way within the user’s browser. XSLT [13] provides a
way to transform the engine data without cluttering up
the web components code with HTML. When the
simulation server receives a display request, the build-
in XSLT processor knows how to parse engine
component-specific XSLT style sheets and apply
transformations. Best of all. a clean separation between
engine data, presentation, and simulation logic allows
changes to be made to the look and feel of a web site
without altering the simulation code. Because XML-
based engine data can be transformed into many
different formats, it can also achieve portability across a
variety of browsers and other devices.

DEMONSTRATION

Based on the designed data object model,
databinding architecture, and simulation architecture, a
web-based engine simulation has been implemented
that internally uses Onvx [16] as the engine simulation
logic. Onyx is an object-oriented framework for
propulsion system simulation. Figure 6 shows the
XML-based Java Gas Turbine Simulator, X-Jgts, being
accessed from an Internet Explorer browser.
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Figure 6. XML-based Java Gas Turbine Simulator accessed from a Web browser

For practical purposes, X-Jgts currently provides
users with 3 different kinds of simulation services. A
simulation identifier (ID) is required to perform each
service.

Start a new simulation

A user can use this choice to start a new engine
simulation in interactive construction mode. After the
user enters a simulation ID, and starts to perform the
simulation, the Swing-based Applet interface (Figure 6)
will appear. From there the user can access the various
main windows of the simulation system: Engine
Schematic Layout, System Control Dialog, Graphing,
Transcript, or Save User Case.

Before each simulation is run, the user must provide
each individual engine component with initial
simulation configuration data from the designed Engine
Schematic Layout Dialog (see Figure 7). An engine
model is developed by building an engine component

7

schematic graphically as /cons (2.2.. BleedDuct, Nozzle,
VariableCompressor, etc.) and connecting them
together. In the diagram, the arrowheaded connecting
lines represent both the directional flow path for fluid
through the engine, and the structural connections along
which mechanical energy is transmitted. The user can
define the operational characteristics for the component
(i.e., the component name, design- and initial-operating
point data, etc.) in the engine component’s dialog
window (Figure 8). The System Control Dialog (Figure
9) provides controls for the overall operation of the
simulation. The steady-state numerical solver is used to
balance the gas turbine equations at the initial operating
point as was defined by the user: while transient solvers
are used for dynamic engine performance analysis.
When the necessary data input for simulation
configuration is finished, the simulation can have the
option to start simulation immediately or download the
configuration file and run it later.
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Figure 10. Graphically display engine component parameters

Once a simulation begins, the engine configuration
data will be encoded in XML format and sent over the
[nternet to the web simulation server. When the server
receives the engine configuration file, it then
automatically dispatches the file to the simulation web
component. where engine databinding and simulation
logic are performed. At the same time, the user can
select from Graph Control Dialog (Figure 10) to plota
number of specified parameters for any of the
components currently displayed in the Engine
Schematic Layout window. The user may also view
simulation status reports, using the Transcript button
shown in Figure 6, that are sent from simulation web
server during the simulation. Once the simulation is
completed, the simulation web component will marshal
all engine data objects into an engine data file
designated by its simulation ID, and store it into the
database repository. Finally, the user can use Save
User Case button to download the complete solution of
the simulation case for later use.

Rerun simulation from an existing file

X-Jgts also provides a service for users to directly
input engine simulation configurations from a file,
which allows bypassing the engine construction
procedures. Part of a sample configuration file is shown
in Figure 11. When a user uploads the configuration file
from a web browser (Figure 6), all the defined
simulation parameters will be immediately available
from Engine Schematic Layout Dialog and System
Control Dialog. Users can then use User cases menu in
Engine Schematic Layour to verify these configurations.
Users can also edit these data using the above two
dialogs. In this case, the updated configuration file will
be sent to the server to run the simulation.

Show existing simulation data results

If a user has finished an engine simulation case and
saved the simulation data using X-Jgts, he/she can later
redisplay the simulation results in a web browser with a
more meaningful data presentation scheme using this
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service. In this case, when the web simulation server
receives an engine simulation case file uploaded from
the user’s web browser (Figure 6), it will internally use
Display Web Component (combined with sets of pre-
designed XSLT style sheets) to dvnamically generate
HTML code for display within the user’s browser.
Figure 12 shows the nozzle data file from an example
simulation case. The user can choose different engine
components to display from the drop-down list at the
top of the web page.

<2 o
<Engine3sct xmi
p

RS

ins="http://mems 1.ni.utoledo ec.iengire >
=~ginelihVersion>1<:Enginel.oVersion>
<E-gneBase BaseName="XJGTS">
<Confguration>
<SteadyStateSolver SioverName="NewtonRaznsonSolver”
ErrorTolerance="5.0E-4" ConvergenceRate="0.7"
InteratonToFailure="50" Peuroa: ¢~ 3-28="0.25"
LowerPartalLim="0.001C" Uooer®z = a.Limit="0.01"7>
<TransientSoiver SioverName= I~grovecE. er
ErrorTolerance="5.0E-4" ConvergenceRate="0.7"
InterationToFauure="50" CetaTime="0.2"
FinalTime="2.0" Pertyroa: onSize="C.25"
LowerPartiailimit="0.001C" UooerPzr aLlimit="0.01" />
<Connectors>
<Connector from="Environment” 10="LPC" sFeedback="false">
<Connector from="__PC" 10="MV13" sFescoack="false"/>
<Connector from="MV13" ‘o="HPC" .sFeecack="false">
<t other connectors are defined in a sir:ar mannar -->
<Connectors>
< Configuration>
<EngineModel>
<Components>
<!—only Nozzle is ilustratea nere. the same with all other components —>
<NonSource>
<NonRatator>
<Nozzle Name="Nozzle">
<NozzleDesignPointData MassF owRate="195.0"
ThroatArea="430.0" ExitArea="492.0" DragCoefficient="0.952"
VelocityCoefficent="0.98" GrossThrust="9400.0"/>
<i—the same with NozzielmtFc.ntData—->

<TimeArray> 0.0 10.0 13.0 < TmeAmay>
<VaiueAmray> 430.0 430.C £€C.0 <ValueArray>

<ThroatAreaTransientContro ‘ers>

<!— the same with ExitAreaT ansientControllers ~>

<Nozzle>
<NonRatator>
<NonSource>
<:Components>
< EngineModet>
< EngineBase>
</EngineRoot>

<ThroatAreaTransientControiers name="Throat Area Transient Controller™>

Figure 11. Engine simulation
specified in XML file format

configuration
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; Nou:le data - Microsoft Internet E)olovu

Favoeres

File gdt Vew Tools Help

X-JGTS Simulation Data View
Nozze ] m

NozzleDesignPointData

135.0 430.0 492.0
NozzlelnitialOperatingData
43200 492.0

Throat Area Transient Controller

TimeAlrtdy VaueAray

430.0
10.0 430.0
130 660.0

Steady State Solution Data

430.0000 452.00C0 0.9564 0.8837

Transient State Solution Data

430.C0C3 492.0000

—

\coouret | oraercer

oot | Dot

RN By: rmin o Apnl 53 C7:S300 PST 2002

34C0.0

Exit Area Transient Controller

492.0
10.0 492.0
130 380.0

0.0000 1921.31 100.3765 0.00000000

06897 0.0000 192130 100.3765 £.0090000C
0.1000  430.00C3  492.0000 0.9554 0.2973 0.0000 1932.39 101404 £.000C000GC
0.2000  430.00C3  492.0000 0.9537 5.5943 0.0000 213253 1024534 £.00000000
0.3000 4300063 452.0000 0.9534 0.6849 0.0000 22523 103.4677 £.0000000G

< J >fﬂ
Qoone T 2 My Computer

Figure 12. Nozzle simulation data displayed within a user’s web browser

CONCLUSION

In this work, an XML-based dynamic databinding
framework for use in engine simulation has been
discussed. By dynamic data binding, the framework
provides an object interface to access and use engine
data, transparently mapping simulation data in engine
components as engine data objects. The framework also
enables the separation of engine simulation logic from
its persistence logic. such that the engine simulation
codes and the underlying data persistence codes can be
developed independently.

Since engine component data in the binding process
are stored in an XML document, they not only bypass
the requirement to have a standard binary encoding or
storage format, but also provide the meaning of the data
through its tag representation. Furthermore, it is
completely natural to move around XML engine data
using HTTP through disparate networks.

This paper also describes a Web-based engine
simulation system, X-J/gts, which internally uses engine
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databinding framework. The simulation system couples
a front-end graphical user interface, developed using
the Java Swing API, and various Java Servlet-based
web components from engine simulation server to
service user’s requests. The designed web components
include remote simulation service, dynamic data
display service in HTML format, and file download and
upload services which allow a user to save data for later
use in a more secure way. All these services are readily
available via the built-in databinding framework
support and the use of XML to describe engine data.
The combined package provides analytical, graphical
and data management tools which allow users to
construct and control dynamic gas turbine simulations
by manipulating graphical objects from a variety of
heterogeneous computer platforms through the use of
Java-enabled world-wide web browsers.

The method developed in this paper is generic and
may readily be used for other simulation applications
requiring intensive data exchange. Using this approach,
developers are enabled to design better aircraft engine

American Institute of Aeronautics and Astronautics



simulation codes via a systematic and more meaningful
data representation scheme and a built-in data
validation method.
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